Skip to content

Weaviate

Reference


Weaviate is an open-source vector search engine and database that enables efficient storage, retrieval, and management of high-dimensional data, often used in machine learning and AI applications.

Categories: [artificial-intelligence]

Version: 1


Connections

Version: 1

null

Properties

NameTypeControl TypeDescription
Open AI API KeySTRINGTEXTThe API key for the OpenAI API which is used to generate embeddings.
HostSTRINGTEXTHost oo your Weaviate instance.
SchemeSTRINGSELECT
Weaviate API KeySTRINGTEXTThe API key for the Weaviate API.

Actions

Data Query

Query data from a Weaviate vector store using OpenAI embeddings.

Properties

NameTypeControl TypeDescription
QuerySTRINGTEXTThe query to be executed.

Load Data

Loads data into a Pinecone vector store using OpenAI embeddings.

Properties

NameTypeControl TypeDescription
Document TypeSTRINGSELECTThe type of the document.
JSON Keys to Use[STRING]ARRAY_BUILDERJson keys on which extraction of content is based. If no keys are specified, it uses the entire JSON object as content.
FILE_ENTRYFILE_ENTRY
Use Token Text SplitterBOOLEANSELECTWhether to use the token text splitter.
Token Text Splitter{INTEGER(defaultChunkSize), INTEGER(minChunkSizeChars), INTEGER(minChunkLengthToEmbed), INTEGER(maxNumChunks), BOOLEAN(keepSeparator)}OBJECT_BUILDERSplits text into chunks based on token count, using the CL100K_BASE encoding.
Use Keyword Metadata EnricherBOOLEANSELECTWhether to use the keyword metadata enricher.
Keyword Metadata Enricher{INTEGER(keywordCount)}OBJECT_BUILDERExtract keywords from document content and add them as metadata.
Use Summary Metadata EnricherBOOLEANSELECTWhether to use the summary enricher.
Summary Metadata Enricher{[STRING](summaryTypes)}OBJECT_BUILDERSummarize the document content and add the summaries as metadata.