Weaviate
Weaviate is an open-source vector search engine and database that enables efficient storage, retrieval, and management of high-dimensional data, often used in machine learning and AI applications.
Categories: artificial-intelligence
Type: weaviate/v1
Connections
Version: 1
null
Properties
Name | Label | Type | Control Type | Description | Required |
---|---|---|---|---|---|
embeddingApiKey | Open AI API Key | STRING | TEXT | The API key for the OpenAI API which is used to generate embeddings. | true |
url | Weaviate Url | STRING | TEXT | The URL of the Weaviate instance. | true |
apiKey | Weaviate API Key | STRING | TEXT | The API key for the Weaviate API. | true |
Actions
Data Query
Name: dataQuery
Query data from a Weaviate vector store using OpenAI embeddings.
Properties
Name | Label | Type | Control Type | Description | Required |
---|---|---|---|---|---|
query | Query | STRING | TEXT | The query to be executed. | true |
JSON Example
{ "label" : "Data Query", "name" : "dataQuery", "parameters" : { "query" : "" }, "type" : "weaviate/v1/dataQuery"}
Load Data
Name: loadData
Loads data into a Pinecone vector store using OpenAI embeddings.
Properties
Name | Label | Type | Control Type | Description | Required |
---|---|---|---|---|---|
documentType | Document Type | STRING OptionsJSON, MD, PDF, TXT, TIKA | SELECT | The type of the document. | true |
jsonKeysToUse | JSON Keys to Use | ARRAY Items[STRING] | ARRAY_BUILDER | Json keys on which extraction of content is based. If no keys are specified, it uses the entire JSON object as content. | false |
document | FILE_ENTRY | FILE_ENTRY | true | ||
useTokenTextSplitter | Use Token Text Splitter | BOOLEAN Optionstrue, false | SELECT | Whether to use the token text splitter. | true |
tokenTextSplitter | Token Text Splitter | OBJECT Properties{INTEGER(defaultChunkSize), INTEGER(minChunkSizeChars), INTEGER(minChunkLengthToEmbed), INTEGER(maxNumChunks), BOOLEAN(keepSeparator)} | OBJECT_BUILDER | Splits text into chunks based on token count, using the CL100K_BASE encoding. | true |
useKeywordEnricher | Use Keyword Metadata Enricher | BOOLEAN Optionstrue, false | SELECT | Whether to use the keyword metadata enricher. | true |
keywordMetadataEnricher | Keyword Metadata Enricher | OBJECT Properties{INTEGER(keywordCount)} | OBJECT_BUILDER | Extract keywords from document content and add them as metadata. | true |
useSummaryEnricher | Use Summary Metadata Enricher | BOOLEAN Optionstrue, false | SELECT | Whether to use the summary enricher. | true |
summaryMetadataEnricher | Summary Metadata Enricher | OBJECT Properties{[STRING](summaryTypes)} | OBJECT_BUILDER | Summarize the document content and add the summaries as metadata. | true |
JSON Example
{ "label" : "Load Data", "name" : "loadData", "parameters" : { "documentType" : "", "jsonKeysToUse" : [ "" ], "document" : { "extension" : "", "mimeType" : "", "name" : "", "url" : "" }, "useTokenTextSplitter" : false, "tokenTextSplitter" : { "defaultChunkSize" : 1, "minChunkSizeChars" : 1, "minChunkLengthToEmbed" : 1, "maxNumChunks" : 1, "keepSeparator" : false }, "useKeywordEnricher" : false, "keywordMetadataEnricher" : { "keywordCount" : 1 }, "useSummaryEnricher" : false, "summaryMetadataEnricher" : { "summaryTypes" : [ "" ] } }, "type" : "weaviate/v1/loadData"}